
Modeling Bitcoin Protocols with Probabilistic

Logic Programming

Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, Elena

Bellodi, and Riccardo Zese

Azzolini Damiano - damiano.azzolini@student.unife.it

1 September 2018

Università degli Studi di Ferrara

mailto:damiano.azzolini@student.unife.it

Bitcoin - Blockchain

Blockchain

Distributed append-only public ledger: each peer in the network has a

copy of this ledger.

• Blockchain contains blocks.

• Block contains transaction.

• User sends transaction.

No need of trusted third party.

Technology underlying cryptocurrencies such as Bitcoin.

1

Bitcoin Blockchain

2

Consensus - 1

Validation is required in order to append a new block to the chain. This

process is called mining. If a peer is able to find the correct hash, it is

rewarded with a certain number of bitcoins plus the fees of the

transactions included in the block.

The chain can have different branches: the miners add the block to the

longest branch because only the longest one is the valid one.

3

Consensus - 2

Bitcoin uses Proof-of-Work (hashcash): find a nonce value such as:

SHA256(SHA256(blockHeader)) ≤ T

T is a value called target and SHA-256 is the hash function “Secure Hash

Algorithm” that returns a 256 bit hash of the input. This value is

dynamically changed every 2016 blocks found to ensure that new blocks

will be generated at regular intervals, one every 10 minutes on average.

4

Drawbacks

• Centralization of hashing power.

• Forks.

• More...

5

Hashing Power Distribution

Figure 1: Hashing power distribution - 25/08/2108

Source: https://btc.com/stats/pool?pool_mode=day

6

https://btc.com/stats/pool?pool_mode=day

Preventing Large Pools

Formation

Problem

To increase the probability to find the correct hash of a block, miners

usually organize themselves into a mining pool: this situation can

generate a super pool that holds more than 50% of the total hash power.

Possible solution: 2-phase PoW. Traditional PoW + signing the header

with the private key of the address that will receive the mining reward

and then finding a new hash smaller than a certain value.

7

2-phase PoW

• State 0 (a0): a miner generates

a hash using a certain nonce. If

this hash is correct, it will move

to state 1, if it’s not, it will stay

in a0.

• State 1 (a1): the miner has

already solved the first hash

puzzle and now needs to solve

the second one.

• State 2 (a2): the miner has

solved both hashes, is rewarded

and now is ready to mine

another block (back to state 0).

• State 3 (a3): another miner has

solved the second hash, so the

first miner can now stop working

on this hash and move to

another one (back to state 0).

a0start a2

a1a3

8

CPLINT Code - 1

a_found_y(_):0.15.

b_found_y(_):0.25.

b_found_x(_):0.10.

found_y(S):- a_found_y(S); b_found_y(S).

trans(a0,S,a1):1.0/50; trans(a0,S,a0):1.0-1.0/50:- \+b_found_x(S).

trans(a1,S,a2):0.15;trans(a1,S,a1):1.0-0.15:- \+b_found_y(S).

trans(a0,S,a3):- b_found_x(S).

trans(a1,S,a3):- b_found_y(S).

trans(a2,S,a0):- found_y(S).

trans(a3,S,a0):- found_y(S).

9

CPLINT Code - 2

% starting at state S at instance I,

% state T is reachable.

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, _, S).

?- mc_sample(reach(a0,0,a2),1000,P).

P = 0.068

mc_sample/3 samples reach/3 1000 times and returns the estimated

probability that a sample is true.

10

Double Spending Attack

Initial State

Goal: spend the same bitcoin twice through the creation of an alternative

chain.

B0 B1

B2

Initial state of the double spending attack. Block B1 with transaction

T1 is inserted in the chain after B0, while the attacker starts mining

another block (B2) with B0 as ancestor, without T1 inside. T1 contains

the amount the attacker wants to double spend.

11

General State

B0 B1 B3 B4 B5

B2 B6

d

General case. The “honest” chain has built 3 confirmation blocks on

top of B1 (B3,B4,B5) while only one block (B6) has been built on top

of B2 by the attacker. In this figure, d represents the distance between

the honest and the secret chain and is used to evaluate the advantage of

the honest chain over the attacker.

12

Successful Attack

B0 B1 B3 B4 B5

B2 B6 B7 B8 B9

Successful attack. The attacker has built a longer chain (marked in red).

The attacker will now publish all blocks from B2 to B9 and so all blocks

from B1 to B5 in the black chain will not be considered valid because

they are part of a chain which is not the longest one.

13

Model

Two functions: attacker’s potential progress function and the catch up

function.

The attacker’s potential progress function relates the number m of blocks

that are mined by the attacker, while the honest chain has mined n

(confirmation) blocks. Modelled with Pascal distribution or Poisson

distribution.

The catch up function describes the probability that the attacker can

create a chain longer than the honest one. Modelled with binomial

random walk.

14

CPLINT Code - 1

% attacker’s potential progress function

% 10 confirmation blocks

% 30% of the total hashing

% power controlled by the attacker

attacker_progress_poisson(X):poisson(X,Lambda):-

Lambda is 10*0.3/0.7.

% catch up function

move(T,1):0.7; move(T,-1):0.3.

walk(InitialPosition):-

walk(InitialPosition,0).

walk(0,_).

walk(X,T0):-

X > 0,

X < 100, % threshold for not winning

move(T0,Move),

T1 is T0+1,

X1 is X+Move,

walk(X1,T1).

15

CPLINT Code - 2

success_poisson:-

attacker_progress_poisson(A),

V is 10 - A,

(V = 0 ->

true;

walk(V)

).

?- mc_sample(success_poisson,1000,P).

Prob = 0.036.

mc_sample/3 samples success_poisson/0 1000 times and returns the

estimated probability that a sample is true.

16

Success Probability - Double Spending Attack

1 5 10 15 20

10

20

30

40

50

60

Number of Confirmations

S
u

cc
es

s
P

ro
b

ab
ili

ty
(%

)

Poisson Distribution
Pascal Distribution

Values obtained considering that the attacker holds 30% of the total

hashing power of the network.

17

Conclusions and Future Work

Probabilistic Logic Programming can be used both to model the current

Bitcoin protocol and to analyze some proposals for improvements.

The model can be extended also to other consensus algorithms in order

to get, for instance, expected reward or expected block validation time.

PLP can also be used to model the behaviour of consensus algorithms in

presence of Byzantine faults.

18

	Bitcoin - Blockchain
	Preventing Large Pools Formation
	Double Spending Attack

